
Statistical Inference 
Test Set 4 

 
1. Let 1 2, ,..., nX X X be a random sample from a 2( , )N µ σ population. Find UMVUEs of the 

signal to noise ration µ
σ  and quantile bµ σ+ , where b  is any given real.  

2. Let 1 2, ,..., nX X X be a random sample from a ( ,1)N µ  population. Find a UMVUE of cdf 
( )x θΦ − , where Φ  denotes the cdf of a standard normal variable. 

3. Let ~ ( , ), where X Bin n p p is known. Find UMVUEs of 2 and ( )p Var X . 
4. Let 1 2, ,..., nX X X be a random sample from a ( )λΡ population. Find a UMVUE of 

1( ) ( 1) (1 )g P X e λλ λ −= ≤ = + . 
5. Let 1 2, ,..., nX X X be a random sample from a ( )Geo p distribution. Find a UMVUE of 

1( 1)P X p= = . 
6. Let 1 2, ,..., nX X X be a random sample from a Gamma ( , )p λ population, where p is known. 

Find a UMVUE of  and m rλ λ− , where  and m r are positive integers. 
7. Let 1 2, ,..., nX X X be a random sample from an exponential population with the density

( ) , , .xf x e xµ µ µ−= > ∈  Find UMVUEs of 2 and µ µ . 
8. Let 1 2, ,..., nX X X be a random sample from ( , )Exp µ σ population. Find UMVUEs of a 

quantile bµ σ+ and reliability function 1( ) ( )R t P X t= > . 
9. Let 1 2, ,..., nX X X be a random sample from a 2(0, )N σ population. Find the best scale 

equivariant estimators of 2  and σ σ with respect to scale invariant loss functions. 
10. Let 1 2, ,..., nX X X be a random sample from ( , )Exp µ σ population. Find best affine 

equivariant estimator of θ µ ησ= + with respect to an affine invariant loss function.  
11. Let 1 2, ,..., nX X X be a random sample from an exponential population with density 

( | ) , 0, 0.xf x e xθθ θ θ−= > >  Find Bayes estimator of θ  with respect to the prior 
( ) , 0.g e θθ θ−= >  The loss functions are 2

1( , ) ( ) ,L a aθ θ= − 2 2
2 ( , ) ( ) /L a aθ θ θ= − and 

2
3( , ) ( ) /L a a aθ θ= − . 

12. Let 1 2, ,..., nX X X be a random sample from a (0, )U θ population. Find Bayes estimator of θ  

with respect to the prior 1( ) , .g
α

α

αβθ θ β
θ += >  The loss function is 2( , ) ( )L a aθ θ= − . 

 
 
 
 
 
 
 
 
 



Hints and Solutions 
 
1. As 2( , )X S is complete and sufficient, one can use Rao-Blackwell-Lehmann-Scheffe 

Theorem to show that estimators 1 2and U U as defined in Hints and Solutions in Test Set 1 

are UMVUEs of µ
σ

 and bµ σ+ respectively. 

2. Since X is complete and sufficient, using Rao-Blackwell-Lehmann-Scheffe Theorem, we 
conclude that ( )h X is a UMVUE of ( )x θΦ − , where 1( ) ( | )h x P X x X x= ≤ = . The 

conditional distribution of 1 |X X x= is 1, .nN x
n
− 

 
 

 It can be then shown that 

( ) ( )
1

nh x x x
n

 
= Φ −  − 

. 

3. UMVUEs of  2 and ( )p Var X are respectively given by 1 2
( 1) ( ) and 
( 1) 1

X X X n xT T
n n n

− −
= =

− −
. 

4. Let 1 1( ) 1, if 0 or 1
0, otherwise.

T X X= =
=

.  

Then 1( )T X is unbiased for ( )g λ . Note that 
1

n

i
i

S X
=

=∑ is complete and sufficient statistic. 

So using Rao-Blackwell-Lehmann-Scheffe Theorem, 1( ) ( ( ) | )h S E T X S= is a UMVUE of 
( )g λ . Now 1 1( ) ( 0 | ) ( 1| )h s P X S s P X S s= = = + = = . 

1
21

1

( 0, )
( 0, )( 0 | )

( ) ( )

n

i
i

P X X s
P X S sP X S s

P S s P S s
=

= =
= =

= = = =
= =

∑
 

Using independence of 1
2

 and 
n

i
i

X X
=
∑ and the additive property of Poisson distribution, we 

get the above expression as 1 sn
n
− 

 
 

. In a similar way, we get 

1

1
( 1)( 1| )

s

s
s nP X S s

n

−−
= = = . Thus ( 1) ( 1)( )

S

S
n S nh S

n
− + −

= . 

5. Let 1 1( ) 1, if 0
0, otherwise.

T X X= =
=

 

As in Qn. 5, ( )h S is a UMVUE of p , where 1( ) ( 0 | )h s P X S s= = =  and 
1

n

i
i

S X
=

=∑ is a 

complete and sufficient statistic. The distribution of S is negative binomial ( , )n p . 

Proceeding as in Qn. 5, we get 1( )
1

nh S
S
−

=
−

. 



6. A complete and sufficient statistic is 
1

n

i
i

T X
=

=∑ . Also ~ ( , )T Gamma np λ . We have  

, and m m r rnp m npE T np m E T
np np r

λ λ− −   −
= > =      +   

 

 
7. A complete and sufficient statistic is (1)Y X= . The density of Y is ( )( ) , .n yf y ne yµ µ−= >   

We have 2 2
2

1 2 2( )  and ( )E Y E Y
n n n

µµ µ= + = + + . Using these UMVUEs of 2 and µ µ  are  

21 2 and YY Y
n n

− − . 

8. Let (1)
1

 and Z ( )
n

i
i

Y X X Y
=

= = −∑ . Then ( , )Y Z is complete and sufficient. Also,  and ZY are 

independently distributed with ~ ,Y Exp
n
σµ 

 
 

 and 2
2 2

2 ~ n
Z χ
σ − . Using these, UMVUEs of 

 and µ σ are given by 1 2 and d
( 1) 1

Z Zd Y
n n n

= − =
− −

 respectively. So a UMVUE for 

quantile is 1 2d bd+ .  
A UMVUE for ( )R t is 1( , ) ( | ( , ))h Y Z P X t Y Z= > .  
 

It can be seen that 
2

1( , ) max 1 ,0
n

n t Yh Y Z
n Z

−
−  −  = −    

. 

9. Note that 2
iT X=∑ is a complete and sufficient statistic. Also 2

2 ~ n
TW χ
σ

= . Let the loss 

functions for estimating 2  and σ σ be 
2 22

2
1 22( , )  and ( , )  a bL a L bσ σσ σ

σ σ
 − − = =   

  
respectively. Clearly the two estimation problems are invariant under the scale group of 
transformations, { : ( ) , 0}S c cG g g x cx c= = > on the space of iX s . Under the transformation 

cg , note that 2 2 2 2,  a , , .c c a c b cbσ σ σ σ→ → → →  The form of a scale equivariant 
estimator of 2σ is ( )kd T kT= , where k is a positive constant. Minimizing the risk function 

of kd with respect to k , we get 
2 4

2 4

( ) 1 .
( ) ( 2) 2
E T nk

E T n n n
σ σ

σ
= = =

+ +
 Hence 

2
T

n +
 the best 

scale equivariant estimator of 2σ . Similarly, the form of a scale equivariant estimator of σ
is 1/2( )pU T pT= , where p is a positive constant. Minimizing the risk function of pU with 



respect to p , we get 
2

1/2

2

1 12( ) 2 2 .
( ) 22

2 2

n n
E Tp
E T n nn

σσ

σ

+ +

= = =
+

So 1/2

1
2

22
2

n

T
n

+

+
 is the best 

scale equivariant estimator of σ . 
 

10. We follow the notation of Qn 8. Let the loss function be 
2

( , , ) aL a θµ σ
σ
− =  

 
. The 

estimation problem is invariant under the affine group of transformations, 
, ,{ : ( ) , 0, }A b c b cG g g x bx c b c= = + > ∈ on the space of iX s . Under the transformation ,b cg , 

note that b + c, , , , , .b b c a ba c Y bY c Z bZµ µ σ σ θ θ→ → → + → + → + →  The form of 
an affine equivariant estimator of θ is ( , )kd Y Z Y kZ= + , where k is a constant. Minimizing 

the risk function of kd with respect to k , we get 2 2

( ) ( )ˆ
( ) ( )

E Y Z E Y EZk
E Z E Z
θ θ− −

= =  

2

1( 1) ( 1)
.

( 2) ( 2)

n n
n n

n n n n

σµ ησ µ σ η

σ

   + − − − − −   
   = =

− −
 So the best affine equivariant estimator of θ  

is 
k̂

d . 

11. The joint pdf of 1 2( , ,..., )nX X X X=  is 
1

( | ) exp , 0, 0.
n

n
i i

i
f x x xθ θ θ θ

=

 = − > > 
 

∑   

The joint pdf of  and X θ is 
1

*( , ) exp 1 , 0, 0.
n

n
i i

i
f x x xθ θ θ θ

=

  = − + > >  
  
∑   

The marginal density of X is then 1

1( ) , 0.
( 1) in

nh x x
nx +

+
= >

+
  

Hence the posterior density of given X xθ = is ( 1, 1)Gamma n nx+ + .  
Note that  

2
2

1 ( 1)( 2)( | ) , ( | ) ,
1 ( 1)

n n nE x E x
nx nx

θ θ+ + +
= =

+ +

2

2

1 1 1 ( 1),
( 1)

nx nxE x E x
n n nθ θ
+ +   = =    −   

.  

With respect to the loss function 1L , the Bayes estimator of θ  is 1( | )
1

nE X
nX

θ +
=

+
.  

With respect to the loss function 2L , the Bayes estimator of θ  is 

2

1
1

1 1

E X
n

nXE X

θ

θ

 
  −  =

+ 
 
 

.  

With respect to the loss function 3L , the Bayes estimator of θ  is 

{ }1/22 ( 1)( 2)
( | )

( 1)
n n

E X
nX

θ
+ +

=
+

. 



12. The joint pdf of 1 2( , ,..., )nX X X X=  is (1) ( )
1( | ) , 0 .nnf x x xθ θ
θ

= < < < <   

The joint pdf of   and X θ is ( )1*( , ) , max{ , }.nnf x x
α

α

αβθ θ β
θ + += >   

The marginal density of X is then ( )

( )

( ) , 0.
( ) max{ , }

nn

n

h x x
n x

α

α

αβ

α β
+= >

 +  
  

Hence the posterior density of given X xθ = is 

( )
( )1

( ) max{ , }
*( | ) , max{ , }

n

n
nn

n x
g x x

α

α

α β
θ θ β

θ

+

+ +

 +  = > .  

With respect to the loss function L , the Bayes estimator of θ  is 

( )( | ) max{ , }
1 n

nE X X
n

αθ β
α
+

=
+ −

. 


