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Statistical Inference
Test Set 4

Let X, X,,.., X, be a random sample from a N(u, o°) population. Find UMVUEs of the

signal to noise ration 2 and quantile «+bo, where b is any given real.

(o2
Let X,,X,,..., X be a random sample from a N(x,1) population. Find a UMVUE of cdf

d(x—0), where ® denotes the cdf of a standard normal variable.

Let X ~ Bin (n, p), where p is known. Find UMVUEs of p? and Var(X).

Let X, X,,..,X,be a random sample from a P(A)population. Find a UMVUE of
g(A)=P(X, <) =(1+A)e".

Let X,,X,,.., X, be a random sample from a Geo (p)distribution. Find a UMVUE of
P(X;=1)=p.

Let X,,X,,..., X, be a random sample from a Gamma (p, A) population, where p is known.

Find a UMVUE of A™ and ™", where m and r are positive integers.
Let X, X,,.., X, be a random sample from an exponential population with the density

f(x)=e“"*, x> u, ueR. Find UMVUEs of x and z°.

Let X, X,,.., X be a random sample from Exp (u, o) population. Find UMVUEs of a
quantile 1 + bo and reliability function R(t) = P(X, >t).

Let X, X,,..., X, be a random sample from a N(0, o*) population. Find the best scale
equivariant estimators of o and o with respect to scale invariant loss functions.

Let X,,X,,..,X,be a random sample from Exp (u,o)population. Find best affine
equivariant estimator of @ = 1+ no with respect to an affine invariant loss function.

Let X, X,,..,X,be a random sample from an exponential population with density
f(x|9)=6e",x>0,60>0. Find Bayes estimator of & with respect to the prior
g(@)=e"’6>0. The loss functions are L,(6,a)=(0-a)’, L,(0,a)=(6-a)*/6* and
L,(0,a)=(0-a)’/a.

Let X,,X,,..., X, be a random sample from a U (0, 8) population. Find Bayes estimator of &

with respect to the prior g(8) = %, @ > f3. The loss function is L(#,a) = (0 —a)*.



Hints and Solutions

As (X,S?)is complete and sufficient, one can use Rao-Blackwell-Lehmann-Scheffe
Theorem to show that estimators U, and U, as defined in Hints and Solutions in Test Set 1

are UMVUEs of £ and 1+ bo respectively.
(o2

Since X is complete and sufficient, using Rao-Blackwell-Lehmann-Scheffe Theorem, we
conclude that h(X)is a UMVUE of ®(x-#), where h(X)=P(X,<x|X =X). The

conditional distribution of X1|>?:7is N(Y,n—_lj. It can be then shown that

n
%) = /L X
h(x)_q)( - 1(x x)].

UMVUEs of p?and Var(X)are respectively given by T, = X(X-D) ndT, = X(-x) :

n(n-1) n-1
Let T(X;)=1 ifX =0orl.
=0, otherwise.
Then T(X,)is unbiased for g(1). Note that S :in is complete and sufficient statistic.
i=1
So using Rao-Blackwell-Lehmann-Scheffe Theorem, h(S)=E(T(X,)|S)is a UMVUE of
g(4). Now h(s)=P(X,=0|S=s)+P(X,=1|S =5).

P(X,=0,5=5) _ P(x1=o,§xi=s)

PG =018 =8)=""0 5T P(S =5)

Using independence of X, and Z X, and the additive property of Poisson distribution, we
i=2

S
. n -
get the above expression as (—) . In a similar way, we get
n

s(n-1)*" )= (n-1°(S+n-1)

P(X,=1/S =)= :

. Thus h(S

Let T(X;)=1 ifX, =0
=0, otherwise.

As in Qn. 5, h(S)is a UMVUE of p, where h(s)=P(X,=0|S=s) and S :in is a

i=1
complete and sufficient statistic. The distribution of Sis negative binomial (n, p).
Proceeding as in Qn. 5, we get h(S) :2—_1'



A complete and sufficient statisticis T = z X,.Also T ~ Gamma(np, 1) . We have

i=1

E[MP=Mrom | _m npsmandE e )
[np np+r

A complete and sufficient statistic is Y = X ,, . The density of Y is f(y)=ne"“ " y> .

We have E(Y) :,u+1 and E(Y?) = /° +2—ﬂ+%. Using these UMVUESs of x and x* are
n n n
Y—1 and Yz—ﬁ.
n n

Let Y =X, and Z = Z(Xi —-Y). Then (Y, Z)is complete and sufficient. Also, Y and Zare

i=1

independently distributed with Y ~ Exp(y,zj and 2z x2 . Using these, UMVUEs of
n o)

and dzzi respectively. So a UMVUE for

. Z
and o are given by d, =Y -
pandodre g y & n(n—1) n-1

quantile is d, +bd,.
A UMVUE for R(t)is h(Y,Z)=P(X,>t]|(Y,Z)).

n-2
It can be seen that h(Y,Z) =n—_1{max{l—%,0H .
n

Note that T :Z X?is a complete and sufficient statistic. Also W :l2~ x7Z. Let the loss
(o}

2 2 2
: L -a -
functions for estimating o°and oche L (o’ a) :(002 J and L, (o, b) :L—Uabj
respectively. Clearly the two estimation problems are invariant under the scale group of

transformations, G, ={g. : g.(x) =cx,c > 0}on the space of X;s. Under the transformation

2

g., note that o® —c’c?, a—c’a, o —>co,b—ch. The form of a scale equivariant

estimator of o*is d, (T)=KkT , where kis a positive constant. Minimizing the risk function
E(T no* T

g (2 ): 9 7= . Hence —— the best
E(T?) n(n+2)c” n+2 n+2

scale equivariant estimator of o*. Similarly, the form of a scale equivariant estimator of o

is U, (T)= pT¥?, where pis a positive constant. Minimizing the risk function of U, with

of d, with respect to k, we get k =



10.

11.

\/E n+l , n+1 n+1

1/2 — O - -
respect to p, we get p= U 2 — 12 5012 7Y s the hest

E(T) 2 o’ \/En;rz ﬁ”;z

scale equivariant estimator of o .

2
We follow the notation of Qn 8. Let the loss function be L(u,a,a)=(ﬂ) . The
O

estimation problem is invariant under the affine group of transformations,
G, ={9,.:9,.(X)=bx+c,b>0,ceR}on the space of X;s. Under the transformation g, .,
note that u >bu+c, o >bo,86 >bf+c,a—>ba+c,Y ->bY +c,Z—>bZ. The form of
an affine equivariant estimator of @is d, (Y,Z) =Y +kZ, where Kk is a constant. Minimizing

the risk function of d, with respect to k, we get Q:E(G_Z)Z:E(Q_YZ)EZ
E(Z7) E(Z)

o 1
(uma—u—n)(n—l)a (n—l)(n—nj
= : = . So the best affine equivariant estimator of &
n(n-2)o n(n—2)

is d..

k

The joint pdf of X =(X,, X,,..., X,)) is f(gl@):e”exp{ QZXI},XI >0,6>0.

The joint pdf of X and @is f *(x,0) =0" exp{—&(in +1j}, X, >0,6>0.
i=1

The marginal density of X is then h(x) :_n—+11’ X, >0.
(nX +1)"
Hence the posterior density of € given X = x is Gamma(n+1,nX +1).
Note that
_ 2 2

E010="" B2 0 - ‘”*f)ﬂ, E[EBJZHX_H,E(LZBJZM,

nx +1 (NX +1)° , n 6 n(n-1)
With respect to the loss function L, the Bayes estimator of 8 is E(6| X) = r)1<+11

+

E(9|>_<j _n-1
E(elzp—(j nX +1

With respect to the loss function L,, the Bayes estimator of 6 is

{sz | X)}UZ Jin+D)(n+2) '

(nX +1)

With respect to the loss function L,, the Bayes estimator of 6 is



12. The joint pdf of X =(X, X,,...,X,) is f(5|9):%,0<x(1) TR <Xy <0

The jointpdf of X and @is f *(x,0) = o & > max{f, X, }-

0n+a+l !

ap” = Xy > 0.
(n+a)| max{s, X, }]

Hence the posterior density of & given X =X s

(n+ a)[max{ﬂ, x(n)}}nm

The marginal density of X isthen h(x) =

9 *(0 | l) = Hn+a+1 ' 0> maX{ﬂ, X(n)}'
With respect to the loss function L, the Bayes estimator of & is
n+a
E(0]X) = max{$, X, }.
n+a-1



