Statistical Inference Test Set 4

- 1. Let $X_1, X_2, ..., X_n$ be a random sample from a $N(\mu, \sigma^2)$ population. Find UMVUEs of the signal to noise ration $\frac{\mu}{\sigma}$ and quantile $\mu + b\sigma$, where b is any given real.
- 2. Let $X_1, X_2, ..., X_n$ be a random sample from a $N(\mu, 1)$ population. Find a UMVUE of cdf $\Phi(x-\theta)$, where Φ denotes the cdf of a standard normal variable.
- 3. Let $X \sim Bin(n, p)$, where p is known. Find UMVUEs of p^2 and Var(X).
- 4. Let $X_1, X_2, ..., X_n$ be a random sample from a $P(\lambda)$ population. Find a UMVUE of $g(\lambda) = P(X_1 \le 1) = (1 + \lambda) e^{-\lambda}$.
- 5. Let $X_1, X_2, ..., X_n$ be a random sample from a Geo (p) distribution. Find a UMVUE of $P(X_1 = 1) = p$.
- 6. Let $X_1, X_2, ..., X_n$ be a random sample from a Gamma (p, λ) population, where p is known. Find a UMVUE of λ^m and λ^{-r} , where m and r are positive integers.
- 7. Let $X_1, X_2, ..., X_n$ be a random sample from an exponential population with the density $f(x) = e^{\mu x}, x > \mu, \mu \in \mathbb{R}$. Find UMVUEs of μ and μ^2 .
- 8. Let $X_1, X_2, ..., X_n$ be a random sample from $Exp(\mu, \sigma)$ population. Find UMVUEs of a quantile $\mu + b\sigma$ and reliability function $R(t) = P(X_1 > t)$.
- 9. Let $X_1, X_2, ..., X_n$ be a random sample from a $N(0, \sigma^2)$ population. Find the best scale equivariant estimators of σ^2 and σ with respect to scale invariant loss functions.
- 10. Let $X_1, X_2, ..., X_n$ be a random sample from $Exp(\mu, \sigma)$ population. Find best affine equivariant estimator of $\theta = \mu + \eta \sigma$ with respect to an affine invariant loss function.
- 11. Let $X_1, X_2, ..., X_n$ be a random sample from an exponential population with density $f(x | \theta) = \theta e^{-\theta x}, x > 0, \theta > 0$. Find Bayes estimator of θ with respect to the prior $g(\theta) = e^{-\theta}, \theta > 0$. The loss functions are $L_1(\theta, a) = (\theta a)^2, L_2(\theta, a) = (\theta a)^2/\theta^2$ and $L_3(\theta, a) = (\theta a)^2/a$.
- 12. Let $X_1, X_2, ..., X_n$ be a random sample from a $U(0, \theta)$ population. Find Bayes estimator of θ with respect to the prior $g(\theta) = \frac{\alpha \beta^{\alpha}}{\theta^{\alpha+1}}, \theta > \beta$. The loss function is $L(\theta, a) = (\theta a)^2$.

Hints and Solutions

- 1. As (\overline{X}, S^2) is complete and sufficient, one can use Rao-Blackwell-Lehmann-Scheffe Theorem to show that estimators U_1 and U_2 as defined in Hints and Solutions in Test Set 1 are UMVUEs of $\frac{\mu}{\sigma}$ and $\mu + b\sigma$ respectively.
- 2. Since \overline{X} is complete and sufficient, using Rao-Blackwell-Lehmann-Scheffe Theorem, we conclude that $h(\overline{X})$ is a UMVUE of $\Phi(x-\theta)$, where $h(\overline{x}) = P(X_1 \le x | \overline{X} = \overline{x})$. The conditional distribution of $X_1 | \overline{X} = \overline{x}$ is $N\left(\overline{x}, \frac{n-1}{n}\right)$. It can be then shown that $h(\overline{x}) = \Phi\left(\sqrt{\frac{n}{n-1}}(x-\overline{x})\right)$.

3. UMVUEs of p^2 and Var(X) are respectively given by $T_1 = \frac{X(X-1)}{n(n-1)}$ and $T_2 = \frac{X(n-x)}{n-1}$.

4. Let $T(X_1) = 1$, if $X_1 = 0$ or 1. = 0, otherwise.

> Then $T(X_1)$ is unbiased for $g(\lambda)$. Note that $S = \sum_{i=1}^n X_i$ is complete and sufficient statistic. So using Rao-Blackwell-Lehmann-Scheffe Theorem, $h(S) = E(T(X_1) | S)$ is a UMVUE of $g(\lambda)$. Now $h(s) = P(X_1 = 0 | S = s) + P(X_1 = 1 | S = s)$.

$$P(X_1 = 0 \mid S = s) = \frac{P(X_1 = 0, S = s)}{P(S = s)} = \frac{P(X_1 = 0, \sum_{i=2}^{n} X_i = s)}{P(S = s)}$$

Using independence of X_1 and $\sum_{i=2}^{n} X_i$ and the additive property of Poisson distribution, we get the above expression as $\left(\frac{n-1}{n}\right)^s$. In a similar way, we get $P(X_1 = 1 | S = s) = \frac{s(n-1)^{s-1}}{n^s}$. Thus $h(S) = \frac{(n-1)^s(S+n-1)}{n^s}$. 5. Let $T(X_1) = 1$, if $X_1 = 0$ = 0, otherwise.

As in Qn. 5, h(S) is a UMVUE of p, where $h(s) = P(X_1 = 0 | S = s)$ and $S = \sum_{i=1}^{n} X_i$ is a complete and sufficient statistic. The distribution of S is negative binomial (n, p). Proceeding as in Qn. 5, we get $h(S) = \frac{n-1}{S-1}$.

- 6. A complete and sufficient statistic is $T = \sum_{i=1}^{n} X_i$. Also $T \sim Gamma(np, \lambda)$. We have $E\left(\frac{\boxed{np-m}}{\boxed{np}}T^{-m}\right) = \lambda^m$, np > m and $E\left(\frac{\boxed{np}}{\boxed{np+r}}T^r\right) = \lambda^{-r}$
- 7. A complete and sufficient statistic is $Y = X_{(1)}$. The density of Y is $f(y) = ne^{n(\mu-y)}$, $y > \mu$. We have $E(Y) = \mu + \frac{1}{n}$ and $E(Y^2) = \mu^2 + \frac{2\mu}{n} + \frac{2}{n^2}$. Using these UMVUEs of μ and μ^2 are $Y - \frac{1}{n}$ and $Y^2 - \frac{2Y}{n}$.
- 8. Let $Y = X_{(1)}$ and $Z = \sum_{i=1}^{n} (X_i Y)$. Then (Y, Z) is complete and sufficient. Also, Y and Z are independently distributed with $Y \sim Exp\left(\mu, \frac{\sigma}{n}\right)$ and $\frac{2Z}{\sigma} \sim \chi^2_{2n-2}$. Using these, UMVUEs of μ and σ are given by $d_1 = Y \frac{Z}{n(n-1)}$ and $d_2 = \frac{Z}{n-1}$ respectively. So a UMVUE for quantile is $d_1 + bd_2$. A UMVUE for R(t) is $h(Y, Z) = P(X_1 > t | (Y, Z))$.

It can be seen that $h(Y,Z) = \frac{n-1}{n} \left[\max\left\{ 1 - \frac{t-Y}{Z}, 0 \right\} \right]^{n-2}$.

9. Note that $T = \sum X_i^2$ is a complete and sufficient statistic. Also $W = \frac{T}{\sigma^2} \sim \chi_n^2$. Let the loss functions for estimating σ^2 and σ be $L_1(\sigma^2, a) = \left(\frac{\sigma^2 - a}{\sigma^2}\right)^2$ and $L_2(\sigma, b) = \left(\frac{\sigma - b}{\sigma}\right)^2$ respectively. Clearly the two estimation problems are invariant under the scale group of transformations, $G_s = \{g_c : g_c(x) = cx, c > 0\}$ on the space of $X_i s$. Under the transformation g_c , note that $\sigma^2 \rightarrow c^2 \sigma^2$, $a \rightarrow c^2 a, \sigma \rightarrow c\sigma, b \rightarrow cb$. The form of a scale equivariant estimator of σ^2 is $d_k(T) = kT$, where k is a positive constant. Minimizing the risk function of d_k with respect to k, we get $k = \frac{\sigma^2 E(T)}{E(T^2)} = \frac{n\sigma^4}{n(n+2)\sigma^4} = \frac{1}{n+2}$. Hence $\frac{T}{n+2}$ the best scale equivariant estimator of σ^2 . Similarly, the form of a scale equivariant estimator of σ is $U_p(T) = pT^{1/2}$, where p is a positive constant. Minimizing the risk function of U_p with

respect to
$$p$$
, we get $p = \frac{\sigma E(T^{1/2})}{E(T)} = \frac{\sqrt{2} \left[\frac{n+1}{2} \sigma^2 \right]}{\left[\frac{n}{2} n \sigma^2 \right]} = \frac{\frac{n+1}{2}}{\sqrt{2} \left[\frac{n+2}{2} \right]}$. So $\frac{\frac{n+1}{2}}{\sqrt{2} \left[\frac{n+2}{2} \right]} T^{1/2}$ is the best

scale equivariant estimator of σ .

- 10. We follow the notation of Qn 8. Let the loss function be $L(\mu, \sigma, a) = \left(\frac{\theta a}{\sigma}\right)^2$. The estimation problem is invariant under the affine group of transformations, $G_A = \{g_{b,c} : g_{b,c}(x) = bx + c, b > 0, c \in \mathbb{R}\}$ on the space of $X_i s$. Under the transformation $g_{b,c}$, note that $\mu \to b\mu + c, \sigma \to b\sigma, \theta \to b\theta + c, a \to ba + c, Y \to bY + c, Z \to bZ$. The form of an affine equivariant estimator of θ is $d_k(Y,Z) = Y + kZ$, where k is a constant. Minimizing the risk function of d_k with respect to k, we get $\hat{k} = \frac{E(\theta - Y)Z}{E(Z^2)} = \frac{E(\theta - Y)EZ}{E(Z^2)}$ $= \frac{\left(\mu + \eta \sigma - \mu - \frac{\sigma}{n}\right)(n-1)\sigma}{n(n-2)\sigma^2} = \frac{(n-1)\left(\eta - \frac{1}{n}\right)}{n(n-2)}$. So the best affine equivariant estimator of θ is d_k .
- 11. The joint pdf of $\underline{X} = (X_1, X_2, ..., X_n)$ is $f(\underline{x} | \theta) = \theta^n \exp\left\{-\theta \sum_{i=1}^n x_i\right\}, x_i > 0, \theta > 0.$ The joint pdf of \underline{X} and θ is $f^*(\underline{x}, \theta) = \theta^n \exp\left\{-\theta\left(\sum_{i=1}^n x_i + 1\right)\right\}, x_i > 0, \theta > 0.$ The marginal density of \underline{X} is then $h(\underline{x}) = \frac{\overline{(n+1)}}{(n\overline{x}+1)^{n+1}}, x_i > 0.$ Hence the posterior density of θ given X = x is $Gamma(n+1, n\overline{x}+1)$.

Hence the posterior density of θ given $\underline{x} = \underline{x}$ is Gamma(n+1, nx)Note that

$$E(\theta \mid \underline{x}) = \frac{n+1}{n\overline{x}+1}, E(\theta^2 \mid \underline{x}) = \frac{(n+1)(n+2)}{(n\overline{x}+1)^2}, E\left(\frac{1}{\theta} \mid \underline{x}\right) = \frac{n\overline{x}+1}{n}, E\left(\frac{1}{\theta^2} \mid \underline{x}\right) = \frac{(n\overline{x}+1)^2}{n(n-1)}.$$

With respect to the loss function L_1 , the Bayes estimator of θ is $E(\theta \mid \underline{X}) = \frac{n+1}{n\overline{X}+1}$.

With respect to the loss function L_2 , the Bayes estimator of θ is $\frac{E\left(\frac{1}{\theta}|\underline{X}\right)}{E\left(\frac{1}{\theta^2}|\underline{X}\right)} = \frac{n-1}{n\overline{X}+1}.$

With respect to the loss function L_3 , the Bayes estimator of θ is $\left\{E(\theta^2 \mid \underline{X})\right\}^{1/2} = \frac{\sqrt{(n+1)(n+2)}}{(n\overline{X}+1)}.$

12. The joint pdf of $\underline{X} = (X_1, X_2, ..., X_n)$ is $f(\underline{x} | \theta) = \frac{1}{\theta^n}, 0 < x_{(1)} < \dots < x_{(n)} < \theta$. The joint pdf of \underline{X} and θ is $f^*(\underline{x}, \theta) = \frac{\alpha \beta^{\alpha}}{\theta^{n+\alpha+1}}, \theta > \max\{\beta, x_{(n)}\}.$ The marginal density of \underline{X} is then $h(\underline{x}) = \frac{\alpha \beta^{\alpha}}{(n+\alpha) [\max\{\beta, x_{(n)}\}]^{n+\alpha}}, x_{(n)} > 0.$ Hence the posterior density of θ given $\underline{X} = \underline{x}$ is

$$g^{*}(\theta \mid \underline{x}) = \frac{(n+\alpha) \lfloor \max\{\beta, x_{(n)}\} \rfloor}{\theta^{n+\alpha+1}}, \theta > \max\{\beta, x_{(n)}\}.$$

With respect to the loss function *L*, the Bayes estimator of θ is $E(\theta \mid \underline{X}) = \frac{n+\alpha}{n+\alpha-1} \max\{\beta, X_{(n)}\}.$